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QUASISTATIONARY FINITE-INTERVAL CONTROL OF THE MOTION 

OF HYBRID OSCILLATORY SYSTEMS* 

L.L. AKULENKO 

A study of the uniaxial (translational or rotational) motion of a 

mechanical system containing perfectly rigid bodies (material points or 
flywheels) is presented. These parts of the system are connected in 
series by elastic elements with distributed characteristics (sprinqs, 
bars or shafts); point controls (forces or torques) are applied to the 
rigid bodies or at the ends of the elastic connectors. An approximate 
solution is proposed to the problem of steering a hybrid 

(discrete-continuous) system to a desired state as a whole, without 
relative elastic vibrations. Underlying the constructive approach of 
this paper is the quasistationary nature of forced elastic displacements, 
which is known to be valid provided the controls are sufficiently smooth 
and even. 

1. Statement of the problem. To fix our ideas, we shall first consider unidirectional 

controlled motion (along the X axis) of a simple hybrid vibrating system (Fig.1). The 

mechanical system contains a perfectly rigid body m (a material point) connected to an 
elastic bar (distributed spring) 01. The geometric, inertial and elastic characteristics of 

the elastic element are assumed to be constant: its length 1, linear 
pressional rigidity a. The conditions of the motion are such that 
can be dealt with in the linear theory. 

density p and com- 
the elastic deformations 

Fig.1 

Variable point controlling forces are applied to the absolutely rigid body m (at z = 0) 
and to the end of the elastic element (x = 1); we will denote them by F,(1) and FI (t), 
respectively. One of the functions F,,,(t) may vanish identically. The initial state of 
the system (at t = 0) is assumed to be known. The problem is to bring the system at some 
finite time t = T< 00 to a specified state of motion, by suitable choice of the controls 
F,,,(t) from some admissible class. In applied problems one usually imposes the basic con- 
dition that there be no elastic vibrations at times t> T (see /l-5/ etc.). 

we will now consider the mathematical formulation of this problem: to determine the 
dynamics and controlled motion of a hybrid system driven by point controls through the 
boundary. The equations of state of the distributed elastic system and boundary conditions 
for the forces are 

pu” = UU”, 0 < z < I; \u = u (t, x) (1.1) 
mu” (t, 0) = cm’ (t, 0) + F, (t), au’ (t, 1) = F, (t) 

Here n = u(t,r) is the absolute displacement of the section 5, r E IO, II at time t. Dots 
and primes denote differentiation with respect to t and I, respectively. The motion of system 
(1.1) is considered over some bounded interval of time t, fE IO, Tfl, i" < Tt< 00. The initial 
state of the system, i.e., the displacements and velocities of the sections of the elastic 
element and of the rigid body are given: 
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u (0, 4 = $ (x), u’ (0, x) = ho (x), x E [O, 11 (1.2) 
where $ and ho are sufficiently smooth functions with g" (+O) = $ (0). h”(+O) = F(O). The 
control problem is to select admissible compactly supported /l/ functionsF,,,(t), F,,l(t)E {F(t)}, 
t E co, Tfl such that 

u (T, z) = gT (x), U' (T, 2) = hT (z), % E LO, 21 (1.3) 

The functions F,,I (t), go, 1 (z), ho,” (.r) are to be chosen so that a classical or strong sol- 
ution of the problem exists /l-3, 6. I/. We note that when u(t,s)=s(t) the system moves as 
a whole without relative elastic vibrations. Thus, if we require that gT = const, hT = const, 
then if F,,,,(t) -0 at t ‘;-- T the system will move as a whole at a constant velocity }LT 
(see below). 

It will be more convenient to solve the boundary-value problem if we non-dimensionalize 
the variables and parameters in system (l.l)-(1.3). This will also enable us to reduce the 
number of parameters. We define the dimensionless variables as follows: 

t* = vt, x* = x1-1, m* = m (pZ)-‘, 212 = CJ (pP)- 

u* (t*, x*) s 24 (t*, 6, x*1) zr’, fO.1 (t*) Ez F,,, (t*v-‘) (pz*Yy' 

go. T* (x*) ES g”*T (z*l) I-‘, lP,T* (I*) s t&T (x*Z) (Iv)-’ 

(1.4) 

Henceforth the asterisk will be omitted. The units of time, length and mass in (1.4) 
are related to the corresponding parameters of the elastic part of the system, which is 
assumed to be significant. The units of measurement could also have been defined otherwise; 
how this should be done in each specific case is dictated by considerations of convenience. 
At any rate, the transformations (1.4) reduce the equations of motion to the form (1.1) with 
p = o = 1 =I; the intervals of time are also transformed accordingly (VT+ T, VT,-+ T,). 

A good mechanical model of system (l.l)-(1.3) is a perfectly rigid flywheel mounted on 
an elastic shaft with distributed torsional rigidity and inertia parameters. The model of a 
stretched string with a material point attached at one of its ends leads to analogous equations; 
and there are other possible mechanical interpretations of problem (l.l)-(1.3). The case 

m=O (the control of a bar) was considered by the present author in /8/, where methods of 
the moment problem /l/ were used to construct an exact solution of the control problem (l.l)- 
(1.3), which optimizes a mean-square cost function, in terms of the initial arbitrary functions 

g",T (x), h0.T (5). 

2. Construction of the sohtion for given applied forces. If the functions fcu WV t E 
LO, Ttl, are known, a solution of the boundary-value problem (1.1) with initial data (1.2) is 
constructed by separation of variables (the Fourier method /l-3, 6, 7/). The corresponding 
selfadjoint boundary-value problem and its solutions - the eigenvalues and eigenfunctions of 
the problem - are as follows: 

X" + h2X = 0, X' (0) = mX" (0) = -n&ax (O), X' (1) = 0 (2.11 

D (m, h) s ha (sin h + mh cos h) = 0, h = arg D 

h, = 0, L = h, (m), r&=1,2,... 

X0 (x, m) = a, = const, -G (x, m) = anon (5, m) 

(Pi (z, m) = cos &x - mh, sin h,x ('pO - 1) 

Computed eigenvalues h, (m), n 3 1 (the roots of the characteristic equation D (m,h) = 0) 
for different m> 0 and n=1,2,... may be found, e.g., in /9/ and elsewhere. It follows 
from (2.1) that for fixed m> 0 the asymptotic behaviour of the eigenvalues n>>l is 
given by 

h, (m) = x,0 - (f&o)- + 0 ((m&0)-*), h,O = 'i,n (2n - 1) 

This asymptotic formula also holds for all n>l and m>l; in the limit as m-00 
we obtain the case of a bar fixed at its left end, for which the eigenvalues and orthonormal 

eigenfunctions are h,, = h,O, 5, = 1'2sin k.,x. 
Now let us consider the asymptotic behaviour of the system for small m, O< m< I. If 

m > 0, this can be derived for "not too large" n,n= 1,2, . . ..n*. where mn*<l; we have 

h, (m) = nn - m (nn) (1 - m) + 0 ((mnn)“) 

In the limit of m = 0 we obtain the case of a free homogenous bar, for which the 
eigenvalues and orthonormal eigenfunctions are /%/: 

h, = 0, &=I; h, = xn, 5, = vz co9 &J 
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Note that if m> 1 (m+ co) and fo - m the boundary condition (1.1) at s=o 
takes the form of a kinematic boundary control; mu"(t,O) = fo(t). This clearly means that the 
mass m and left end of the bar are displaced independently of its elastic vibrations. The 
study of this control problem is of some practical interest. 

The system osf(e)igenfunctions a(.z,m) = 1 + 
mh (I), where 

{X, (z)}, n >_ 0, is orthogonal with weight. 
z is the Dirac delta-function /7/. This is proved by direct integration 

of the expression X,X,,x over z,x~ 10,1l, subject to conditions (2.1). The eigenfunctions 
E, (5, m), orthonormalised with respect to x, form a basis {%,(z,m))x (n=O,i,...): 

5, (5, m) = X, (5, m) IIX, lIxP = Tn (r, m) C (m) (2.2) 

(%,, Sn,)x = 6,,,; n, n’ = 0, 1, 2, . . . 

ro2 = 1 + m, r,2 = ljp + m + 1/,m2h,z - (1 + m2hn2) (2mh,*)-’ ain2 an 
h> 1) 

Here 6,,) is the Kronecker delta; in the evaluation of r,% (m) (n = 1, 2. . . .) we have used 
the identity sin h, + mh, cos h, G 0, since A, (m) are the roots of the characteristic 
Eq.(2.1). The above expressions are obtained by letting m+O or m-m. 

Using a well-known method /lo/ (see also /8/), we obtain a denumerable system of dif- 
ferential equations for the Fourier coefficients U,(t) n> 0 of the expansion of the desired 
solution of problem (l.l), (1.2); these equations are connected through the controls fO,l(t): 

u(t~r) =,~~R,(1)%,(1,m)~s,(t) + SI~~L(~)%,(G m) (2.3) 

6," = 'PO (l), 'PO (t) = [fo (t) + fl (t)l At-‘, 6, (0) = so, 6,’ (0) = d 

et,” + h”2e, = ‘Pn (t), vn (4 = E, (0, 4 f. 0) + E, (1, 4 fl W 

L (0, 4 = r,?, %, (1, m) = (1 + maJ.,2) r,-’ cos A, 

8, (0) = gno, 8; (0) = h,O, n 2 1 

The variable 6, = &,r,-’ represents the coordinate of the centre of mass of the system; 
M = (1 + m) is the total mass and (fO $ fr) the total force. The remaining coefficients 
en (n 2 1) describe vibrations in all modes relative to the moving centre of mass; if O,(t)= 

0 (n > I), system (1.1) is moving rigidly (see Sect.1). The initial values g,', h,' (n > 0) 
are the Fourier coefficients with weight x of the initial distribution functions p(z), h"(z) 
(1.2) in terms of the basis {%,(t, m)),, and so = g,“r;‘, d = h,“r,-l are the initial position 

and velocity of the centre of mass. 
Interestingly enough, if we assume that for some n>l the functions fo(t) and fl (a 

are proportional, 
fo M = --CCC Ll (1 + m%?) 11 (0. t E IO, Tl 

then the controls will have no effect on the mode in question, since by (2.3) fn (1) G 0. 
Vibrations in this mode will be free; in particular, there will no none at all if g,O= h,O= 0. 

The motion of the denumerable-dimensional system (2.3). for given controls f. (t), f1 (t), t E 
IO, Tl, is determined by quadratures: 

fk3, (t) = so + u”t + \ (t - r) ~0 (z) dzs 
b 

6,’ (t) = u” + \ 90 (z) dT 

e,(t) = g,Ocosh,t + +-sin&t + + 
‘n 

n { sinh.(t--:)p,(r)dr 

8,; (t) = de, (t)idt, n > 1 gno = (8, %n)~, bLo = w, En)x 

(2.4) 

We shall assume that the coefficients g,', h,,” decrease fairly rapidly as n increases, 
i.e., the functions $(z),h"(z) are chosen from the appropriate smoothness class /2, 6-8/. 
The boundary controls f,,,l(t) are also assumed to be sufficiently smooth. Under these con- 
ditions, substitution of (2.4) into the series (2.3) produces the desired strong or classical 
solution u = u(t,x) of problem (l.l), (1.2). This series, and the series for the derivatives 
of u with respect to t, 2, obtained by term-by-term differentiation, will either converge in 
the mean square or uniformly or will lead to generalized functions (if the smoothness con- 
ditions are not satisfied). 
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3. Approxinrate solution of the stiptified fundamental problem. System (2.3) can be 
interpreted as a denumerable collection of pendulums (linear oscillators) placed on a common 
moving base, with the latter subjected to controlling forces fo,l (t) 18,111. In general the 
frequencies at which the pendulums oscillate are incommensurate, i.e., the free vibrations 
of the system are almost periodic. The control problem for the motion (l.l)-(1.3) with 
general terminal conditions g,T, h,,T p 0, g,T = On (T), h,T = 8,' (T), based on system (2.31, can 
be approximately asymptotically solved for T>1 (.T+ CO) in the formulation suggested in 
/l/. However, his approach to the control problem involves the realization of an extremely 
complicated function, involving a polynomial and an almost periodic function of t. Moreover, 
the control cannot always be implemented to within arbitrary prescribed accuracy in powers 
of the small parameter, whose value is related to the length T of the time interval and the 
magnitude of the control. 

We propose another approach to the approximate solution of the control problem to within 
the desired accuracy for the basic, bounded formulation. To be specific: let us assume that 
h o = g7,0 = 0, n> 1, i.e., there are initially no relative vibrations in the system. They 
miy be suppressed at a preliminary phase of the control process or damped out by a small 
natural dissipation. The problem is now to bring the object to the desired state of motion 
as a whole; moreover, at the end of the process the elastic vibrations must be suppressed to 
within a prescribed degree of accuracy with respect to the small parameter e (T - ~0): 

where C, and d, are coefficients that tend to zero fairly rapidly as niao. 
We propose to seek the control functions fO(t),f,(t) in the class of smooth, slowly 

varying and compactly supported functions /l/. In formal terms: 

fo.l (t)= fo,l (x) E cDK to, @I, x = et E [O, 81, T = 8e-' 

w [O, 81 = {'p (x, e): cp (4 P 07 x E [O, e1; q(k) (x, e) E 0, 

x FZ IO, 01; cp(“) (x, 0) Ix=o,e = 0; k = 0, 1, . . ., K, K < cm} 

(32) 

Here {cp} are functions of the $10~ time x which vanish together with their derivatives of 
order up to K inclusive; the (K + I)-th derivative is assumed to be integrable in either 
the proper or the improper sense (see below); the coefficient 0> 0 is independent of e. 

The physical meaning of the assumption that f,,,, =fo,r(x) are slow functions is that in 
the duration T of the control process the elastic part of the system performs many (of the 
order of e-l) vibrations (in the lowest - first - mode); this is in fact usually the case in 
practice and does not constitute a prohibitive restriction. Indeed, usually F,J= F,,,(Qt), 
where Q is the characteristic frequency of the control in dimensional time t c-5 IO, Tl, for 
example, Q-1/T. Non-dimensionalizing in accordance with (1.4), we get 

f. 1 ( P) s F, 1 ((WV) P) (plvy 7 e 

where we have put QA=e<t. 
Let us assume that the initial conditions (1.2) and terminal conditions (1.3) correspond 

to a state of motion of the object as a whole, without relative vibrations: 

6, (0) = $, 6,’ (0) = d (3.3) 

a,* [6, (T) - s”‘l* + /3” l6,’ (T) - uT12 = 0, ~3 + p” ,> 0 
n, T g, = n /pT = 0 , n=1,2,... 

These conditions meant that $'T = con&, h”,T = con&. The terminal condition (3.3) imposed on 
the motion of the centre of mass implies, if aa > 0, B" > 0, that 
where ST, v* 

6, (T) = ST, 6,' (T) = VP, 
are given. If a=o, the velocity 6,'(T) = uT is prescribed, while 6, (T) 

We may assume without loss of generality that 
of the transformations 6, = s + s'J' + v= (t - T), 
the first case we have a moving coordinate 
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We now consider the motion of the centre of mass of system (2.3) for control functions 

f0.i (4 of the form (3.2). If a,p # 0, both of the following conditions must hold: 

&3- x) ‘p. (x) dx = e2so + EUW (a # 0) (3.4) 
II 

but if fi=O(a#O) or a=O(p#O) only one is necessary. By suitable choice of the 
functions fo,l(x)E@x [O,@] (3;;)_o;e can make sure that conditions (3.4) are satisfied; where 

if e2]s0]+s]uO]-l,i.e., -2, I70 _ s-1 , then cpo(x)- 1, but if EISOI+luOl~l, 
i.e., So - E-l, Y” - i, then rp, (x) _ e. 

The second situation may prove preferable, since it leads to small o(s) elastic dis- 
placements, implying that linear elasticity theory is applicable to within the desired 

accuracy in e. Other asymptotic forms for a", 8 and q,(x) for small e, including inter- 
mediate forms, are also possible and admissible. The selection and construction of functions 

fll, 1 (4 in @x [O, 81 involves no difficulties.. The form of the function 'PO (x) for 
different K values is shown qualitatively in Fig.2, curves l-3. Curve 1 may have a singular- 
ity of the type xl-v,O(y( 1, x-0; this corresponds to K = 0, i.e., a function 'p. which 
is almost a step function (on-off control) and yields almost time-optimal control. Curve 2 
corresponds to K =I; it is almost trapezoidal, with smoothed corners, and has finite angles 
of inclination. Curve 3 corresponds to K> 2. If one of conditions (3.4) is not imposed 

(B = 0 or a=O), the control 'pa(x) may be picked in a form similar to that in Fig.2, 
but without any change in the sign of m0 (XL i.e., it will look like the part of 'PO (x) 
over the interval x E [0,80]. Note that 0 may be fixed and assigned in advance, in which 
case the spread of values of cpo(x) will be determined by the initial conditions. Conversely, 
if the spread of values is bounded, e.g., I ‘po (4 I < 4, the value of that parameter will be 
determined by solving the appropriate time-optimal control problem. 

Thus, the controls cp,(x)~ @x [O,@] enable one to change 
the motion of the centre of mass of the system, i.e., the 
variables 6,,6,,' (or s, v) , substantially. We shall show that 
when that is done elastic vibrations are induced relatively 
weakly for t E LO, Tl ; we shall give estimates for the residual 
oscillations at T( t< Tt in terms of the small parameter. 

Elastic displacements during the control process, however, 
may be quite significant - of the order of the control If01 + 

--------_ I f1 I. Nevertheless, the displacements are quasistatic, as can 
be seen by evaluating @,, (t), 8,’ (t), n> 1 by formulae (2.4) with 
g,o = h,O = 0. 

Fig.2 We will first consider the control interval t E LO, Tl. 
Integrating formulae (2.4) successively by parts, we finally 
obtain 

en (t) = h,-*C+J, (X) - E%,-“p,,” (X) + E4~,-eC&,(4) (X) - E%,,-8C&,(6) (X) + (3.5) 

s*h,-lo~,(B) (x) - . . . + An,x (x, E) -I- E~+%~'~+~)Z~,K (t, e) 

On' (t) = d0, (t) / dt = ~h,,-%p,,’ (x) - ~%,-~qn” (x) + ~“h,-~rp,(~) (x) - 

e’h,-*q,(‘) (x) f egh,-lofq *@) (x) - . . . + A:,= (~9 8) + 
~K+lpw~~ K . k 4 

n> 1, t E LO, Tl, T = 88-l 

The forms of the remainder terms A,,,x, A',,, and Zn.x, ZEsK depend on the parity of K. 
For odd K = 2k + 1 (k = 0, 1, 2, . . .) , 

A n, x = 2 e~-lh;(K+')(P(K-l) n(x) 9 A* “, K = + eKk,(K+l’(P~K) (x) (3.6) 
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similarly, for even K = 2k, 

The signs &and 7 in 13.6), (3.7) depend on the remainders 
4. It_,is assumed (see (3.2) and the definition of the class QK) . _ . . 

(3.7) 

of K and K --1 modulo 
that the integrals Z,,X 

and I,* I< (3.61, (3.7) exist for tE LO,&-'] and satisfy the following estimates in terms 
of E (see, e.g., /4/j: 

II,,K 1, 1IE.K 1 = 0 (E-'), 'i < 1, 1 fo 1 + 1 fl 1 = 0 (I) (3.8) 

Iln,K I, ICX I = 0 W% Y < 1, I fo I + I fl I = 0 (&I 

Such estimates hold if the functions $K") (X) have a finite number of singularities 
of the type (x - xi)-Y, where i is the number of the integrable discontinuity of the second 

kind (i = 1,2..., i*) /4/. Thus, in cases 1 and 2 of the curves 'PO (x) shown in Fig.2 we 
obtain, respectively: 

K = 0: 0, (t) = A,,-‘cp, (x) f ~0 (I,, 0 A,,-2) (3.9) 

O,,‘( t) = ?O (z:!“h,-1). n > 1 

K = 1: 0, (t) = A,,-$, (x) + 90 (Z,,,,k,,-3) 

0,; (t) = A,,-?y,,’ (x) + $0 (Z?, Jq2) 

t E LO, fW1, n>l 

According to (3.5)-(3.8), we can derive expressions for the coordinates of the elastic 

displacements when K > 2. It follows from the formulae that the elastic deformations in 

the control process f~.~ (x). t E IO, 2’1, consist of quasistatic displacements and relatively 
small rapid oscillations. The principal term (with respect to E) of the quasistatic defor- 

mations is 

where W satisfies estimates of the type 0(.$+*-y) or 0 (E K+*-v) (see (3.8)). 
We will now study the relative vibrations of the system after the end of the control 

nrocess T< t -< Tt. for 
i3.2) into 

Definins cp, (x) = Q t> T and takina the terminal conditions 
accoint, we obtain the ‘fbllowing estimates (see (3.1)i: 

(3.10) 

I %I (Q I 8+‘h;(=+‘)O (In, x), T < t Q T, (3.11) 

I %’ (G I = F~‘+%;,(~+‘)O (Z:, K), T, = Otcl 

Thus, 
of mass to 
relatively 
negligibly . 

the application of smooth and even compactly supported controls causes the centre 
change its state of motion to a considerable degree. There remain in the system 
small elastic vibrations, whose amplitude may be estimated in advance and made 
small by suitable choice of the control. This possibility is of no little interest 

In practical situations demanding precision control of complex hybrid systems, since our con- 
clusions are also valid for more general systems. 

4.~Conctuding remarks. 4.1. Generalization of the control problem to two-mass or multi- 
moss hybrid systems. Let us consider a certain generalization of the mechanical model of 
the system in Fig.1: imagine another mass ml at the right end (z= I), and denote the mass 
at the left end (z= 0) by VI+,. Non-dimensionalizing in accordance with (l-4), we have 6, = 
m,,l(pl)-'. We obtain a boundary-value problem of type (1.1): 
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&” = &“, o<z<i; 11 = u (t. z) (4.1) 

rn&” (f, 0) = 11’ (f. 0) + f. (f), m,zL” (f, I) = -u’ (f, 1) + f& (f) 

If fo.l(t) are given, the initial conditions may have the qeneral form (1.2). As before, 
we consider the control problem in its restricted formulation isee Sect.3, formulae (3.3)). 
The solution of problem (4.1) may be tackled along lines similar to those used in Sect.2. 
The selfadjoint eigenvalue and eigenfunction problem and its solution are as follows: 

(4.2) 

Let us briefly investigate the roots h, (m,,,m,) of the characteristic equation D==O 

(4.2). The equation and its roots are symmetric with respect to m,,ml>O. At m,=O or 
m,= 0 it is identical with (2.1). If m,-im(m1>0) or ml--m(m,>O), we obtain in the limit 
the characteristic equation c&h= m,&, corresponding to a rigidly attached left or right 
end. But if both masses go to infinity, I+,,~-=, we obtain vibrations of a bar attached at 
both ends: sinh. = 0, h, = an. In addition, if mo,ml>O are finite, then as k-m the asymp- 
totic form of kn also corresponds to a bar attached at both ends: h, = nn + (me + mt)*(m,m3nn)-'+ 
0 (n-f). For small m,,ml~i and "not too large n" (1 <:n$ n*) the asymptotic formula 
describes the case of a free rod: 

b= nn -nn(moi- ml) (1 -In, - ml) + 0 (i(m*i m,)nn)J) 

The eigenfunctions 5, (z, mot ml)= 'p,,r,-' are orthonormal with weight x= ~(x,m~, ml) and 
have the basis property. Using the approach set out in Sect.2, we obtain a denumerable system 
of equations for the coordinates d,(t),B, (t)(nZ 1) similar to (2.3) wherem = mo+ ml, M = 1+ m,~,, 
and h,, r,, as defined in (4.2) - the scalar product is defined relative to weight x. 
rest of the construction is similar to that of Sect.3. 

The 

We will now consider a multimass control system of p+- f rigid bodies connected in 
series by p.p> i, distributed elastic elements. It is assume% that are the 
characteristics of the distributed elements; 

Pi9 aI> 0 

some of whichmay be zero. 
m,,m, (f== 1,2,...,p) are the masses of the bodies, 

As a result we obtain a solution of the system of simultaneous 
boundary-value problems 

.I 
Plkl = RU8", 0< I, < c,; ut = ui 0. s1) 

m/Y" (t. 1,) = e,+*u;it (6 0) - Ufiuj' (t, I,) + F, (0, j s 0 7 r. .‘ p; , 
!a* = Gp+1 = 0, 

uk (tv lk) = uk+’ (t, ‘-% k = i, 2, . . ., p - 1 

(4.3) 

Here FI 01 are the control functions applied to the massesm,,m, (i= f,...,p) The 
corresponding system, of eigenvalue and eigenfunction problems is obtained by separation of 
variables: 

co 

11, = kI @,G) = 2 Bn(QX<,n(zi) (4.4) 
,i=o 

xl"+ aax, = 0, x* = Xr (li). 0 :- 51 < fi 
Xi (xi) = aicos hz, + bi sin ti 

We obtain a system of 2p boundary-value problems for the 2p functions X1&), 
arbitrary constants oi, bi. 

containing 2p 
For the corresponding homogeneous linear algebraic system to have 

a non-trivial solution, the parameter h 
equation D (n, p. ct; h) = 0, 

must take values satisfying the characeristic 
where D is the determinant of a (2~ Y sp) matrix; m, P,O are 

vectors of the parameters. As the expressions in question are rather cumbersome, it is pot 
convenient to write out the determinant in its general form. However, we note that D - hp+Dp, 
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where I), is a quasipolynomial containing powers of i and products of the functions sin hl,, 
cos hl‘. The zero root h, = 0 corresponds to motion of the centre of mass of a system with 
mass 1w = m, f Zi (mi i pali) under the action of a total force F,(t)=jF,(i) +iL,F,(t). The rest of 
the construction proceeds along lines analogous to those described above. The smooth even 
controls Ii = ij (x) y = 0, I, . ..p) ensure the required relative accuracy 0 (,x+I-v) of the control 
in motion of a hybrid vibrating system of more general form (4.3). 

A similar procedure can also be adopted for controllable systems with inhomogeneous 
characteristics PC = Pr (&f. 01 = Of W> which may be investigated either accurately or approxi- 
mately, e.g., by the technique of /12/. 

4.2. Analysis of motion for some specific controt StrategieS. Let us consider the 
motion of a hybrid system of type (1.1) or (4.1) for some specific choices of the controls 
fo (K), h (x). We first consider on-off controls: 

fa,i (8) = ag,l sign (co.1 - I%.IX), x e IO, 81, 

where the parameters Q,,, a,,,, PO,1 = oonst satisfy conditions (3.4). Since lo, I (x) are not in 

class W, we have no estimates of type (3.9) for the elastic vibrations. It can be shown by 
direct integration that the vibrations and *quasistatic" displacement are of the same order 
of magnitude l=,,~j both during the control process X E (0, WI and thereafter x>e. More- 
over, depending on the switching time xz.1 = %,l&,ll and the terminal time x=R, the amplitude 

of the vibrations may increase. If 'Q,=J-E~ i.e., P-8-‘, p-i, the amplitude of the 
residual vibrations will also be of the order of e. 

We will now consider trapezoidal-shaped controls fo WI and fl w in class QI" with a 
finite angle of inclination. By (3.5) and (3.81, we obtain 8, (0 = %l (x) + eO (%'A,-3). 8,' (Q = 
co (rp,'&I-z) for t = IO, T1 and % (t) = eO ('p,,%?, en' (0 = 80 ('p,'&-*# for t> T. If fo.1 - 8, fO,l’ - e, 
the absolute deviation from the quasistatic approximation is 0 (es). 

Possible mechanical models of the hybrid controllable systems just considered are uniaxial 
series of elastic shafts and absolutely rigid flywheels, cords connected in series with 
material points at their ends, etc. 
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